New formulation of Bacillus thuringiensis israelensis for the control of Culex quinquefasciatus Say, 1823 (Diptera, Culicidae) in an effluent treatment pond

Authors

DOI:

https://doi.org/10.37486/1809-8460.ba19002

Abstract

Culex quinquefasciatus Say, 1823 (Diptera, Culicidae) has relevance in health due to their role in transmitting pathogens that cause diseases such as Bancroftian filariasis, West Nile virus, Rift Valley fever, Saint Louis encephalitis, Zika virus and Mayaro virus. Subsequent monitoring and control of these vectors are crucial to minimize the circulation of these pathogens. Bacillus thuringiensis subspecies israelensis de Barjac, 1978 (Bti) is a bacterium that produces toxins with specific entomopathogenic action, distinguishing it from synthetic insecticides due to its high specificity and lower susceptibility to resistance. This study aims to evaluate the effectiveness of new Bti-based formulations for controlling C. quinquefasciatus mosquitoes under field conditions. Product BR 101 demonstrated satisfactory efficacy for up to five days, achieving a peak population reduction of 94.97% on the third day post-application, followed by a gradual population recovery. The product proved effective for C. quinquefasciatus control without affecting abiotic factors, offering an efficient option for reducing vector density with minimal impact on non-target fauna due to its selectivity.

Downloads

Download data is not yet available.

Author Biography

João A. C. Zequi, Universidade Estadual de Londrina, Londrina, PR, Brazil

Docente disciplina de Zoologia de Invertebrados e Fisiologia Animal Unifil Londrina. Pesquisas com Diptera: Culicidae utilizando-se controle biológico

References

Angelo, E. A.; Vilas-Bôas, G. T.; Castro-Gómez, R. J. H. (2010) Bacillus thuringiensis: general characteristics and fermentation. Semina: Ciências Agrárias, 31: 945-958. doi: 10.5433/1679-0359.2010v31n4p945

Araújo, Y. C.; Roque, R. A.; Tadei, W. P.; Zequi, J. A. C. (2018) Controle de Aedes (Stegomyia) aegypti (Linnaeus, 1792) (Diptera: Culicidae) aclimatados em diferentes temperaturas e níveis de gás carbônico utilizando Bacillus thuringiensis israelenses, Saccharopolyspora spinosa e Piriproxyfen. In: Carvalho, Y. C. S. Patologia das doenças, pp. 59-71. Belo Horizonte: Atena.

Boisvert, M.; Boisvert, J. (2000) Effects of Bacillus thuringiensis var israelensis on target and nontarget organisms: a review of laboratory and field experiments. Biocontrol Science and Technology, 10: 517-561. doi: 10.1080/095831500750016361

Bravo, A. (2018) Biodiversity of Cry toxins produced by Bacillus thuringiensis and evolution of resistance to these toxins in different insect pests. Toxicon, 149: 98. doi: 10.1016/j.toxicon.2018.02.010

Brasil (2009) Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica. Diretrizes Nacionais para a Prevenção e Controle das Epidemias de Dengue. https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/svsa/dengue/diretrizes_nacionais_prevencao_controle_dengue.pdf/view. Access on: 24.ix.2024.

Brasil (2011) Ministério da Saúde. Secretaria de Vigilância em Saúde. Guia de Vigilância para Culex quinquefasciatus. http://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/svsa/culex-quinquefasciatus/guia_vigilancia_culex_quinquefasciatus.pdf/view. Access on: 8.v.2024.

Brasil (2019) Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Imunização e Doenças Transmissíveis. Coordenação-Geral de Vigilância de Arboviroses. Recomendações para Manejo da Resistência de Aedes aegypti a Inseticidas. https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/estudos-e-notas-informativas/2019/nota-informativa-no-1032019-cgarbdeidtsvsms.pdf. Access on: 24.ix.2024.

Brasil (2023) Ministério da Saúde. Secretaria de Vigilância em Saúde. Doenças Socialmente Determinadas: saiba mais sobre a Filariose Linfática. http://www.gov.br/saude/pt-br/assuntos/noticias/2023/junho/doencas-socialmente-determinadas-saiba-mais-sobre-a-filariose-linfatica. Access on: 7.v.2024.

Brasil (2024) Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação-Geral de Vigilância de Arboviroses. Nota Técnica conjunta nº 135/2024-SVSA/SAPS/SAES/MS. Brasília. https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/notas-tecnicas/2024/nota-tecnica-conjunta-no-135-2024-svsa-saps-saes-ms. Access on: 30.ix.2024.

Cardoso, B. F.; Serra, O. P.; Heinen, L. B. S.; Zuchi, N.; Souza, V. C.; Naveca, F.G.; Santos, M. A. M.; Slhessarenko, R. D. (2015) Detection of Oropouche virus segment S in patients and in Culex quinquefasciatus in the state of Mato Grosso, Brazil. Memórias do Instituto Oswaldo Cruz, 110: 745-754. doi: 10.1590/0074-02760150123

Dawson, D.; Salice, C. J.; Subbiah, S. (2019) The efficacy of the Bacillus thuringiensis israelensis larvicide against Culex tarsalis in municipal wastewater and water from natural wetlands. Journal of the American Mosquito Control Association, 35: 97-106. doi: 10.2987/18-6771.1

Forrattini, O. P. (2002) Culicidologia Médica. Vol 2. São Paulo: Edusp.

Fry-O'Brien, L. L.; Mulla, M. S. (1996) Effect of tadpole shrimp, Triops longicaudatus (Notostraca: Triopsidae), on the efficacy of the microbial control agent Bacillus thuringiensis var israelensis in experimental microcosms. Journal of the American Mosquito Control Association, 12: 33-38.

Gaugler, R.; Molloy, D. (1980) Feeding inhibition in black fly larvae (Diptera: Simuliidae) and its effects on the pathogenicity of Bacillus thuringiensis var. israelensis. Environmental Entomology, 9: 704-708. doi: 10.1093/ee/9.5.704

Guedes, D. R.; Paiva, M. H.; Donato, M. M.; Barbosa, P. P.; Krokovsky, L.; Rocha, S. W. S.; Lasaraiva, K.; Crespo, M. M.; Rezende, T. M.; Wallau, G. L.; et al. (2017) Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. Emerging Microbes & Infections, 6: e69. doi: 10.1038/emi.2017.59

Guo, X.-X.; Li, C.-X.; Deng, Y.-Q.; Xing, D.; Liu, Q.-M.; Wu, Q.; Sun, A.-J.; Dong, Y.-D.; Cao, W.-C.; Qin, C.-F.; Zhao, T.-Y. (2016) Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus. Emerging Microbes & Infections, 5: e102. doi: 10.1038/emi.2016.102

Lacey, L. A. (2007) Bacillus thuringiensis sorovariety israelensis and Bacillus sphaericus for mosquito control. Journal of the American Mosquito Control Association, 23: 133-163. doi: 10.2987/8756-971x(2007)23[133:btsiab]2.0.co;2

Lima-Camara, T. N. (2016) Emerging arboviruses and public health challenges in Brazil. Revista de Saúde Pública, 50: 36. doi: 10.1590/s1518-8787.2016050006791

Lopes, R. P.; Lima, J. B. P.; Martins, A. J. (2019) Insecticide resistance in Culex quinquefasciatus Say, 1823 in Brazil: a review. Parasites & Vectors, 12: 591. doi: 10.1186/s13071-019-3850-8

Mulla, M. S.; Thavara, U.; Tawatsin, A.; Chomposri, J.; Su, T. (2003) Emergence of resistance and resistance management in field populations of tropical Culex quinquefasciatus to the microbial control agent Bacillus sphaericus. Journal of the American Mosquito Control Association, 19: 39-46.

Myers, P. S.; Yousten, A. A. (1980) Localization of a mosquito-larval toxin of Bacillus sphaericus 1593. Applied and Environmental Microbiology, 39: 1205-1211. doi: 10.1128/aem.39.6.1205-1211.1980

Rueda, L. M. (2008) Global diversity of mosquitoes (Insecta: Diptera: Culicidae) in freshwater. Hydrobiologia, 595: 477-487. doi: 10.1007/s10750-007-9037-x

Rydzanicz, K.; Sobczynski, M.; Guz-Regner, K. (2010) Comparison of activity and persistence of microbial insecticides based on Bacillus thuringiensis israelensis and Bacillus sphaericus in organicly polluted mosquito-breeding sites. Polish Journal of Environmental Studies, 19: 1317-1323.

Silva, M.; Furigo Junior, A.; Furlan, S. A.; Souza, O. (2011) Production of bio-insecticide Bacillus thuringiensis var israelensis in semicontinuous processes combined with batch processes for sporulation. Brazilian Archives of Biology and Technology, 54: 45-52. doi: 10.1590/S1516-89132011000100006

Sinegre, G.; Gaven, B.; Vigo, G. (1981) Contribution to standardization of laboratory tests on experimental and commercial formulations of the serotype H-14 of Bacillus thuringiensis. II – influence of temperature, free chlorine, pH, and water depth of biological activity of primary powder. Entomologie Medicale et Parasitologie, 19: 149-155.

WHO - World Health Organization (2024) Brazil eliminates lymphatic filariasis as a public health. WHO newsroom. http://www.who.int/news/item/01-10-2024-brazil-eliminates-lyphatic-filariasis-as-a-public-health-problem. Access on: 01.x.2024.

Zequi, J. A. C.; Lopes, J. (2007) Biological control of Culex (Culex) saltanensis Dyar, (Diptera, Culicidae) through Bacillus thuringiensis israelensis in laboratory and field conditions. Revista Brasileira de Zoologia, 24: 164-168. doi: 10.1590/s0101-81752007000100020

Zequi, J. A. C.; Santos, F. P.; Lopes, J. (2014) Control of Culex quinquefasciatus and Cx. saltanensis (Diptera: Culicidae) with Bacillus thuringiensis israelensis in wastewater treatment lagoons. Revista Colombiana de Entomología, 40: 98-103.

Downloads

Published

2024-12-23

How to Cite

Bocaleti, A. da S., Almeida, V. Y. T. de, Lima, E. A. de, Schorr, R. R., Marques, F. de A., Silva, M. A. N. da, … Zequi, J. A. C. (2024). New formulation of Bacillus thuringiensis israelensis for the control of Culex quinquefasciatus Say, 1823 (Diptera, Culicidae) in an effluent treatment pond. BioAssay, 19, ba19002. https://doi.org/10.37486/1809-8460.ba19002

Issue

Section

Research Article

Metrics

Funding data